A Necessary Condition for Making Money from Fair Games
Kesten, Harry ; Lawler, Gregory F.
Ann. Probab., Tome 20 (1992) no. 4, p. 855-882 / Harvested from Project Euclid
Let $X_1,X_2,\ldots$ be independent random variables such that $X_j$ has distribution $F_{\sigma(j)}$, where $\sigma(j) = 1$ or 2, and the distributions $F_i$ have mean 0. Assume that $F_i$ has a finite $q_i$th moment for some $1 < q_i < 2$. Let $S_n = \sum^n_{j=1}X_j$. We show that if $q_1 + q_2 > 3$, then $\lim\sup P\{S_n > 0\} > 0$ and $\lim\sup P\{S_n < 0\} > 0$ for each sequence $\{\sigma(j)\}$ of ones and twos.
Publié le : 1992-04-14
Classification:  Inhomogeneous random walk,  recurrence,  60J15
@article{1176989809,
     author = {Kesten, Harry and Lawler, Gregory F.},
     title = {A Necessary Condition for Making Money from Fair Games},
     journal = {Ann. Probab.},
     volume = {20},
     number = {4},
     year = {1992},
     pages = { 855-882},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989809}
}
Kesten, Harry; Lawler, Gregory F. A Necessary Condition for Making Money from Fair Games. Ann. Probab., Tome 20 (1992) no. 4, pp.  855-882. http://gdmltest.u-ga.fr/item/1176989809/