Binomial Mixtures and Finite Exchangeability
Wood, G. R.
Ann. Probab., Tome 20 (1992) no. 4, p. 1167-1173 / Harvested from Project Euclid
We answer two questions: "What is the probability that a randomly chosen distribution function on $\{0,1,\ldots, n\}$ is a mixture of binomial distributions?" and "What is the probability that an $n$-exchangeable sequence is the initial segment of an infinite exchangeable sequence?" Curiously, the answers are the same.
Publié le : 1992-07-14
Classification:  Binomial,  mixture,  finite exchangeability,  infinite exchangeability,  de Finetti,  moment curve,  simplex,  volume,  60E05,  60G09,  60D05
@article{1176989684,
     author = {Wood, G. R.},
     title = {Binomial Mixtures and Finite Exchangeability},
     journal = {Ann. Probab.},
     volume = {20},
     number = {4},
     year = {1992},
     pages = { 1167-1173},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989684}
}
Wood, G. R. Binomial Mixtures and Finite Exchangeability. Ann. Probab., Tome 20 (1992) no. 4, pp.  1167-1173. http://gdmltest.u-ga.fr/item/1176989684/