Strict Stationarity of Generalized Autoregressive Processes
Bougerol, Philippe ; Picard, Nico
Ann. Probab., Tome 20 (1992) no. 4, p. 1714-1730 / Harvested from Project Euclid
In this paper we consider the multivariate equation $X_{n+1} = A_{n+1}X_n + B_{n+1}$ with i.i.d. coefficients which have only a logarithmic moment. We give a necessary and sufficient condition for existence of a strictly stationary solution independent of the future. As an application we characterize the multivariate ARMA equations with general noise which have such a solution.
Publié le : 1992-10-14
Classification:  Autoregressive model,  linear stochastic system,  ARMA process,  strict stationarity,  state space system,  Lyapounov exponent,  stochastic difference equation,  60G10,  62M10,  60J10,  93E03
@article{1176989526,
     author = {Bougerol, Philippe and Picard, Nico},
     title = {Strict Stationarity of Generalized Autoregressive Processes},
     journal = {Ann. Probab.},
     volume = {20},
     number = {4},
     year = {1992},
     pages = { 1714-1730},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989526}
}
Bougerol, Philippe; Picard, Nico. Strict Stationarity of Generalized Autoregressive Processes. Ann. Probab., Tome 20 (1992) no. 4, pp.  1714-1730. http://gdmltest.u-ga.fr/item/1176989526/