Clusters of a Random Walk on the Plane
Revesz, P.
Ann. Probab., Tome 21 (1993) no. 4, p. 318-328 / Harvested from Project Euclid
Let $r(n)$ be the radius of the largest disc covered by $S(1),\ldots, S(n)$, where $\{S(k); k = 1, 2,\ldots\}$ is the simple symmetric random walk on $Z^2$. The main result tells us that $r(n) \geq n^{1/50}$ a.s. for all but finitely many $n$.
Publié le : 1993-01-14
Classification:  Random walk on the plane,  covered discs,  strong laws,  local time,  60F15,  60J55
@article{1176989406,
     author = {Revesz, P.},
     title = {Clusters of a Random Walk on the Plane},
     journal = {Ann. Probab.},
     volume = {21},
     number = {4},
     year = {1993},
     pages = { 318-328},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989406}
}
Revesz, P. Clusters of a Random Walk on the Plane. Ann. Probab., Tome 21 (1993) no. 4, pp.  318-328. http://gdmltest.u-ga.fr/item/1176989406/