Existence and Continuity of Occupation Densities of Stochastic Integral Processes
Imkeller, Peter
Ann. Probab., Tome 21 (1993) no. 4, p. 1050-1072 / Harvested from Project Euclid
Let $f$ be a square-integrable function on the unit square. Assume that the singular numbers $(a_i)_{i \in \mathbb{N}}$ of the Hilbert-Schmidt operator associated with $f$ admit some $0 < \alpha < \frac{1}{3}$ such that $\sum^\infty_{i = 1}|a_i|^\alpha < \infty$. We present a purely stochastic method to investigate the occupation densities of the Skorohod integral process $U$ induced by $f$. It allows us to show that $U$ possesses continuous square-integrable occupation densities and obviously generalizes beyond the second Wiener chaos.
Publié le : 1993-04-14
Classification:  Skorohod integral processes,  occupation densities,  Tanaka's formula,  Kolmogorov's continuity criterion,  60H05,  60G17,  60G48,  47B10
@article{1176989282,
     author = {Imkeller, Peter},
     title = {Existence and Continuity of Occupation Densities of Stochastic Integral Processes},
     journal = {Ann. Probab.},
     volume = {21},
     number = {4},
     year = {1993},
     pages = { 1050-1072},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989282}
}
Imkeller, Peter. Existence and Continuity of Occupation Densities of Stochastic Integral Processes. Ann. Probab., Tome 21 (1993) no. 4, pp.  1050-1072. http://gdmltest.u-ga.fr/item/1176989282/