The Transition Function of a Fleming-Viot Process
Ethier, S. N. ; Griffiths, R. C.
Ann. Probab., Tome 21 (1993) no. 4, p. 1571-1590 / Harvested from Project Euclid
Let $S$ be a compact metric space, let $\theta \geq 0$, and let $\nu_0$ be a Borel probability measure on $S$. An explicit formula is found for the transition function of the Fleming-Viot process with type space $S$ and mutation operator $(Af)(x) = (1/2)\theta\int_S(f(\xi) - f(x))\nu_0(d\xi)$.
Publié le : 1993-07-14
Classification:  Infinite-dimensional diffusion process,  measure-valued diffusion,  Poisson-Dirichlet distribution,  infinitely-many-neutral-alleles diffusion model,  population genetics,  60G57,  60J35,  60J60,  92D15
@article{1176989131,
     author = {Ethier, S. N. and Griffiths, R. C.},
     title = {The Transition Function of a Fleming-Viot Process},
     journal = {Ann. Probab.},
     volume = {21},
     number = {4},
     year = {1993},
     pages = { 1571-1590},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989131}
}
Ethier, S. N.; Griffiths, R. C. The Transition Function of a Fleming-Viot Process. Ann. Probab., Tome 21 (1993) no. 4, pp.  1571-1590. http://gdmltest.u-ga.fr/item/1176989131/