Let $S$ be a compact metric space, let $\theta \geq 0$, and let $\nu_0$ be a Borel probability measure on $S$. An explicit formula is found for the transition function of the Fleming-Viot process with type space $S$ and mutation operator $(Af)(x) = (1/2)\theta\int_S(f(\xi) - f(x))\nu_0(d\xi)$.
@article{1176989131,
author = {Ethier, S. N. and Griffiths, R. C.},
title = {The Transition Function of a Fleming-Viot Process},
journal = {Ann. Probab.},
volume = {21},
number = {4},
year = {1993},
pages = { 1571-1590},
language = {en},
url = {http://dml.mathdoc.fr/item/1176989131}
}
Ethier, S. N.; Griffiths, R. C. The Transition Function of a Fleming-Viot Process. Ann. Probab., Tome 21 (1993) no. 4, pp. 1571-1590. http://gdmltest.u-ga.fr/item/1176989131/