Comparison Techniques for Random Walk on Finite Groups
Diaconis, Persi ; Saloff-Coste, Laurent
Ann. Probab., Tome 21 (1993) no. 4, p. 2131-2156 / Harvested from Project Euclid
We develop techniques for bounding the rate of convergence of a symmetric random walk on a finite group to the uniform distribution. The techniques gives bounds on the second largest (and other) eigenvalues in terms of the eigenvalues of a comparison chain with known eigenvalues. The techniques yield sharp rates for a host of previously intractable problems on the symmetric group.
Publié le : 1993-10-14
Classification:  Card shuffling,  reversible Markov chains,  random walk,  groups,  eigenvalues,  20B30,  60B15,  60J05,  60F99
@article{1176989013,
     author = {Diaconis, Persi and Saloff-Coste, Laurent},
     title = {Comparison Techniques for Random Walk on Finite Groups},
     journal = {Ann. Probab.},
     volume = {21},
     number = {4},
     year = {1993},
     pages = { 2131-2156},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989013}
}
Diaconis, Persi; Saloff-Coste, Laurent. Comparison Techniques for Random Walk on Finite Groups. Ann. Probab., Tome 21 (1993) no. 4, pp.  2131-2156. http://gdmltest.u-ga.fr/item/1176989013/