Markov Chains Indexed by Trees
Benjamini, Itai ; Peres, Yuval
Ann. Probab., Tome 22 (1994) no. 4, p. 219-243 / Harvested from Project Euclid
We study a variant of branching Markov chains in which the branching is governed by a fixed deterministic tree $T$ rather than a Galton-Watson process. Sample path properties of these chains are determined by an interplay of the tree structure and the transition probabilities. For instance, there exists an infinite path in $T$ with a bounded trajectory iff the Hausdorff dimension of $T$ is greater than $\log(1/\rho)$ where $\rho$ is the spectral radius of the transition matrix.
Publié le : 1994-01-14
Classification:  Trees,  Markov chains,  branching random walks,  recurrence,  Hausdorff dimension,  packing dimension,  60J15,  60J10,  60J80
@article{1176988857,
     author = {Benjamini, Itai and Peres, Yuval},
     title = {Markov Chains Indexed by Trees},
     journal = {Ann. Probab.},
     volume = {22},
     number = {4},
     year = {1994},
     pages = { 219-243},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988857}
}
Benjamini, Itai; Peres, Yuval. Markov Chains Indexed by Trees. Ann. Probab., Tome 22 (1994) no. 4, pp.  219-243. http://gdmltest.u-ga.fr/item/1176988857/