Distinguishing a Sequence of Random Variables from a Random Translate of Itself
Okazaki, Yoshiaki ; Sato, Hiroshi
Ann. Probab., Tome 22 (1994) no. 4, p. 1092-1096 / Harvested from Project Euclid
Let $\mathbf{X} = \{X_k\}$ be an i.i.d. real random sequence, let $\epsilon = \{\epsilon_k\}$ be a Rademacher sequence independent of $\mathbf{X}$ and let $\mathbf{a} = \{a_k\}$ be a deterministic real sequence. The aim of this paper is to prove that the mutual absolute continuity of probability measures induced by $\{X_k\}$ and $\{X_k + a_k\epsilon_k\}$ implies $\mathbf{a} \in \ell_4$. This is a generalization of a result of Shepp.
Publié le : 1994-04-14
Classification:  Absolute continuity of infinite product measures,  random translation,  Rademacher sequence,  60G30,  28C20
@article{1176988742,
     author = {Okazaki, Yoshiaki and Sato, Hiroshi},
     title = {Distinguishing a Sequence of Random Variables from a Random Translate of Itself},
     journal = {Ann. Probab.},
     volume = {22},
     number = {4},
     year = {1994},
     pages = { 1092-1096},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988742}
}
Okazaki, Yoshiaki; Sato, Hiroshi. Distinguishing a Sequence of Random Variables from a Random Translate of Itself. Ann. Probab., Tome 22 (1994) no. 4, pp.  1092-1096. http://gdmltest.u-ga.fr/item/1176988742/