Chapman-Kolmogorov Equation for Non-Markovian Shift-Invariant Measures
Courbage, M. ; Hamdan, D.
Ann. Probab., Tome 22 (1994) no. 4, p. 1662-1677 / Harvested from Project Euclid
We study the class $C_\pi$ of probability measures invariant with respect to the shift transformation on $K^\mathbb{Z}$ (where $K$ is a finite set of integers) which satisfies the Chapman-Kolmogorov equation for a given stochastic matrix $\Pi$. We construct a dense subset of measures in $C_\pi$ distinct from the Markov measure. When $\Pi$ is irreducible and aperiodic, these measures are ergodic but not weakly mixing. We show that the set of measures with infinite memory is $G_\delta$ dense in $C_\pi$ and that the Markov measure is the unique measure which maximizes the Kolmogorov-Sinai (K-S) entropy in $C_\pi$. We give examples of ergodic measures in $C_\pi$ with zero entropy.
Publié le : 1994-07-14
Classification:  Chapman-Kolmogorov,  stationary Markov chain,  ergodic non-weakly mixing dynamical systems,  entropy,  skew-product,  60G10,  28D05
@article{1176988618,
     author = {Courbage, M. and Hamdan, D.},
     title = {Chapman-Kolmogorov Equation for Non-Markovian Shift-Invariant Measures},
     journal = {Ann. Probab.},
     volume = {22},
     number = {4},
     year = {1994},
     pages = { 1662-1677},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988618}
}
Courbage, M.; Hamdan, D. Chapman-Kolmogorov Equation for Non-Markovian Shift-Invariant Measures. Ann. Probab., Tome 22 (1994) no. 4, pp.  1662-1677. http://gdmltest.u-ga.fr/item/1176988618/