The Small Ball Problem for the Brownian Sheet
Talagrand, Michel
Ann. Probab., Tome 22 (1994) no. 4, p. 1331-1354 / Harvested from Project Euclid
We show that the logarithm of the probability that the Brownian sheet has a supremum at most $\epsilon$ over $\lbrack 0, 1\rbrack^2$ is of order $\epsilon^{-2}(\log(1/\epsilon))^3$.
Publié le : 1994-07-14
Classification:  Probabilities for suprema,  probabilities for norms,  60E15,  60G17,  60B11,  28C20,  46A35,  46B20
@article{1176988605,
     author = {Talagrand, Michel},
     title = {The Small Ball Problem for the Brownian Sheet},
     journal = {Ann. Probab.},
     volume = {22},
     number = {4},
     year = {1994},
     pages = { 1331-1354},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988605}
}
Talagrand, Michel. The Small Ball Problem for the Brownian Sheet. Ann. Probab., Tome 22 (1994) no. 4, pp.  1331-1354. http://gdmltest.u-ga.fr/item/1176988605/