We show that the historical Brownian motion may be recovered from ordinary super-Brownian motion when the dimension $d$ of the underlying Brownian motion is greater than 4. We outline a proof showing that this conclusion is false if $d \leq 3$. The state of affairs in the critical dimension $d = 4$ is left unresolved. Some extensions are given for $1 + \beta$ stable branching mechanisms where $\beta \in (0, 1\rbrack$.
@article{1176988603,
author = {Barlow, Martin T. and Perkins, Edwin A.},
title = {On the Filtration of Historical Brownian Motion},
journal = {Ann. Probab.},
volume = {22},
number = {4},
year = {1994},
pages = { 1273-1294},
language = {en},
url = {http://dml.mathdoc.fr/item/1176988603}
}
Barlow, Martin T.; Perkins, Edwin A. On the Filtration of Historical Brownian Motion. Ann. Probab., Tome 22 (1994) no. 4, pp. 1273-1294. http://gdmltest.u-ga.fr/item/1176988603/