Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score
Dembo, Amir ; Karlin, Samuel ; Zeitouni, Ofer
Ann. Probab., Tome 22 (1994) no. 4, p. 2022-2039 / Harvested from Project Euclid
Consider two independent sequences $X_1,\ldots, X_n$ and $Y_1,\ldots, Y_n$. Suppose that $X_1,\ldots, X_n$ are i.i.d. $\mu_X$ and $Y_1,\ldots, Y_n$ are i.i.d. $\mu_Y$, where $\mu_X$ and $\mu_Y$ are distributions on finite alphabets $\sigma_X$ and $\sigma_Y$, respectively. A score $F: \sigma_X \times \sigma_Y\rightarrow \mathbb{R}$ is assigned to each pair $(X_i, Y_j)$ and the maximal nonaligned segment score is $M_n = \max_{0\leq i, j\leq n - \Delta, \Delta \geq 0} \{\sum^\Delta_{k=1} F(X_{i+k}, Y_{j+k})\}$. The limit distribution of $M_n$ is derived here when $\mu_X$ and $\mu_Y$ are not too far apart and $F$ is slightly constrained.
Publié le : 1994-10-14
Classification:  Large deviations,  Chen-Stein method,  sequence matching,  large segmental sums,  60F10,  60G70
@article{1176988493,
     author = {Dembo, Amir and Karlin, Samuel and Zeitouni, Ofer},
     title = {Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score},
     journal = {Ann. Probab.},
     volume = {22},
     number = {4},
     year = {1994},
     pages = { 2022-2039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988493}
}
Dembo, Amir; Karlin, Samuel; Zeitouni, Ofer. Limit Distribution of Maximal Non-Aligned Two-Sequence Segmental Score. Ann. Probab., Tome 22 (1994) no. 4, pp.  2022-2039. http://gdmltest.u-ga.fr/item/1176988493/