Let $X = \{X(t); t \in T\}$ be a measurable symmetric $\alpha$-stable process, $0 < \alpha < 2$. In this paper necessary and sufficient conditions for $X$ to have almost all sample paths in an Orlicz space $\mathbb{L}_\psi(T, \mu)$ with a function $\psi$ satisfying the $\Delta_2$-condition are given.
Publié le : 1994-10-14
Classification:
Stable processes,
sample paths,
Orlicz spaces,
convergence of random series in vector spaces,
62G17,
60E07,
60B11
@article{1176988489,
author = {Norvaisa, Rimas and Samorodnitsky, Gennady},
title = {Stable Processes with Sample Paths in Orlicz Spaces},
journal = {Ann. Probab.},
volume = {22},
number = {4},
year = {1994},
pages = { 1904-1929},
language = {en},
url = {http://dml.mathdoc.fr/item/1176988489}
}
Norvaisa, Rimas; Samorodnitsky, Gennady. Stable Processes with Sample Paths in Orlicz Spaces. Ann. Probab., Tome 22 (1994) no. 4, pp. 1904-1929. http://gdmltest.u-ga.fr/item/1176988489/