Stable Processes with Sample Paths in Orlicz Spaces
Norvaisa, Rimas ; Samorodnitsky, Gennady
Ann. Probab., Tome 22 (1994) no. 4, p. 1904-1929 / Harvested from Project Euclid
Let $X = \{X(t); t \in T\}$ be a measurable symmetric $\alpha$-stable process, $0 < \alpha < 2$. In this paper necessary and sufficient conditions for $X$ to have almost all sample paths in an Orlicz space $\mathbb{L}_\psi(T, \mu)$ with a function $\psi$ satisfying the $\Delta_2$-condition are given.
Publié le : 1994-10-14
Classification:  Stable processes,  sample paths,  Orlicz spaces,  convergence of random series in vector spaces,  62G17,  60E07,  60B11
@article{1176988489,
     author = {Norvaisa, Rimas and Samorodnitsky, Gennady},
     title = {Stable Processes with Sample Paths in Orlicz Spaces},
     journal = {Ann. Probab.},
     volume = {22},
     number = {4},
     year = {1994},
     pages = { 1904-1929},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988489}
}
Norvaisa, Rimas; Samorodnitsky, Gennady. Stable Processes with Sample Paths in Orlicz Spaces. Ann. Probab., Tome 22 (1994) no. 4, pp.  1904-1929. http://gdmltest.u-ga.fr/item/1176988489/