On the Fractal Nature of Empirical Increments
Deheuvels, Paul ; Mason, David M.
Ann. Probab., Tome 23 (1995) no. 3, p. 355-387 / Harvested from Project Euclid
We prove that the set of points where exceptional oscillations of empirical and related processes occur infinitely often is a random fractal, and evaluate its Hausdorff dimension.
Publié le : 1995-01-14
Classification:  Empirical processes,  fractals,  strong laws,  functional laws of the iterated logarithm,  tail and local empirical processes,  60F06,  60F15
@article{1176988390,
     author = {Deheuvels, Paul and Mason, David M.},
     title = {On the Fractal Nature of Empirical Increments},
     journal = {Ann. Probab.},
     volume = {23},
     number = {3},
     year = {1995},
     pages = { 355-387},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988390}
}
Deheuvels, Paul; Mason, David M. On the Fractal Nature of Empirical Increments. Ann. Probab., Tome 23 (1995) no. 3, pp.  355-387. http://gdmltest.u-ga.fr/item/1176988390/