Consider a mean zero random variable $X$, and an independent sequence $(X_n)$ distributed like $X$. We show that the random Fourier series $\sum_{n\geq 1} n^{-1} X_n \exp(2i\pi nt)$ converges uniformly almost surely if and only if $E(|X|\log\log(\max(e^e, |X|))) < \infty$.