Symmetric Two-Particle Exclusion-Eating Processes
Liu, Xijian
Ann. Probab., Tome 23 (1995) no. 3, p. 1439-1455 / Harvested from Project Euclid
We consider infinite particle systems on a countable set $S$ with two-particle exclusion-eating motion determined by a symmetric transition function $p(x, y)$. This is, in a certain sense, a mixture of the exclusion process and the voter model. We discuss the dual process of this process and use the dual process to give a description of the set of invariant measures and to prove an ergodic theorem.
Publié le : 1995-07-14
Classification:  Exclusion process,  voter model,  coalescing random walk,  duality,  ergodic theorem,  60K36
@article{1176988191,
     author = {Liu, Xijian},
     title = {Symmetric Two-Particle Exclusion-Eating Processes},
     journal = {Ann. Probab.},
     volume = {23},
     number = {3},
     year = {1995},
     pages = { 1439-1455},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988191}
}
Liu, Xijian. Symmetric Two-Particle Exclusion-Eating Processes. Ann. Probab., Tome 23 (1995) no. 3, pp.  1439-1455. http://gdmltest.u-ga.fr/item/1176988191/