Constructing Gamma-Martingales with Prescribed Limit, Using Backwards SDE
Darling, R. W. R.
Ann. Probab., Tome 23 (1995) no. 3, p. 1234-1261 / Harvested from Project Euclid
Let $V_W$ and $V_Y$ be Euclidean vector spaces and let $V_Z \equiv L(V_W \rightarrow V_Y)$. Given a Wiener process $W$ on $V_W$, with natural filtration $\{\mathscr{I}_t\}$, and a $\mathscr{I}_T$-measurable random variable $U$ in $V_Y$, we seek adapted processes $(Y, Z)$ in $V_Y \times V_Z$ satisfying the SDE $U = Y(t) + \int_{(t,T\rbrack}ZdW - \int_{(t, T\rbrack} \Gamma(Y, ZZ^\ast) ds/2, 0 \leq t \leq T,$ under local Lipschitz and convexity conditions on the map $(y, A) \rightarrow \Gamma(y, A)$. These conditions apply in particular in the case $\Gamma(y, A) = \sum\Gamma^i_{jk}(y)A^{jk}$, where $\Gamma$ is a linear connection on $V_Y$ whose Christoffel symbols $\Gamma^i_{jk}$ are bounded and Lipschitz, and $\Gamma$ has certain convexity properties. In that case the solution $Y$ above is known as a $\Gamma$-martingale with terminal value $U$. The solution $(Y, Z)$ is constructed explicitly using the Pardoux-Peng theory of backwards SDE's. Applications include the Dirichlet problem and the heat equation for harmonic mappings, and other PDE's.
Publié le : 1995-07-14
Classification:  Stochastic differential equation,  terminal value,  Brownian motion,  martingale,  gamma-martingale,  connection,  harmonic map,  quasilinear partial differential equation,  58G32,  60G48,  60H20
@article{1176988182,
     author = {Darling, R. W. R.},
     title = {Constructing Gamma-Martingales with Prescribed Limit, Using Backwards SDE},
     journal = {Ann. Probab.},
     volume = {23},
     number = {3},
     year = {1995},
     pages = { 1234-1261},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176988182}
}
Darling, R. W. R. Constructing Gamma-Martingales with Prescribed Limit, Using Backwards SDE. Ann. Probab., Tome 23 (1995) no. 3, pp.  1234-1261. http://gdmltest.u-ga.fr/item/1176988182/