We prove a central limit theorem for the distance of the Brownian point on the universal cover of a compact negatively curved Riemannian manifold. The technical point is a contraction property for the leafwise Brownian motion along the stable foliation.
Publié le : 1995-07-14
Classification:
Foliated Brownian motion,
central limit theorem,
negative curvature,
58G32,
58F17,
60J65
@article{1176988181,
author = {Ledrappier, Francois},
title = {Central Limit Theorem in Negative Curvature},
journal = {Ann. Probab.},
volume = {23},
number = {3},
year = {1995},
pages = { 1219-1233},
language = {en},
url = {http://dml.mathdoc.fr/item/1176988181}
}
Ledrappier, Francois. Central Limit Theorem in Negative Curvature. Ann. Probab., Tome 23 (1995) no. 3, pp. 1219-1233. http://gdmltest.u-ga.fr/item/1176988181/