Mixtures of Distributions: A Topological Approach
Li, L. A. ; Sedransk, N.
Ann. Statist., Tome 16 (1988) no. 1, p. 1623-1634 / Harvested from Project Euclid
Identifiability problems have previously precluded a general approach to testing the hypothesis of a "pure" distribution against the alternative of a mixture of distributions. Three types of identifiability are defined, and it is shown that $B$-identifiability allows a Bayesian solution to the testing problem. First, an equivalence relation is defined over parametrizations of probability functions. Then the projection onto the quotient space is shown to give a $B$-identifiable parametrization. Bayesian inference proceeds using the Bayes factor as a "test" criterion.
Publié le : 1988-12-14
Classification:  Identifiability,  hypothesis testing,  detecting mixtures,  quotient space,  62E10,  62F03,  62F15
@article{1176351057,
     author = {Li, L. A. and Sedransk, N.},
     title = {Mixtures of Distributions: A Topological Approach},
     journal = {Ann. Statist.},
     volume = {16},
     number = {1},
     year = {1988},
     pages = { 1623-1634},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176351057}
}
Li, L. A.; Sedransk, N. Mixtures of Distributions: A Topological Approach. Ann. Statist., Tome 16 (1988) no. 1, pp.  1623-1634. http://gdmltest.u-ga.fr/item/1176351057/