Convergence Rates for Empirical Bayes Estimation in the Uniform $U(0, \theta)$ Distribution
Nogami, Yoshiko
Ann. Statist., Tome 16 (1988) no. 1, p. 1335-1341 / Harvested from Project Euclid
Let $\{(X_i, \theta_i)\}$ be a sequence of independent random vectors where $X_i$ has a uniform density $U(0, \theta_i)$ for $0 < \theta_i < m (< \infty)$ and the unobservable $\theta_i$ are i.i.d. $G$ in some class $\mathscr{G}$ of prior distributions. In the $(n + 1)$st problem we estimate $\theta_{n + 1}$ by $t_n(X_1, \cdots, X_n, X_{n + 1}) \doteq t_n(\mathbf{X})$, incurring the risk $R_n \doteq \mathbf{E}(t_n(\mathbf{X}) - \theta_{n + 1})^2$, where $\mathbf{E}$ denotes expectation with respect to all random variables $\{(X_i, \theta_i)\}^{n + 1}_{i = 1}$. Let $R$ be the infimum Bayes risk with respect to $G$. In this paper the author exhibits empirical Bayes estimators with a convergence rate $O(n^{-1/2})$ of $R_n - R$ and shows that there is a sequence of empirical Bayes estimators for which $R_n - R$ has a lower bound of the same order $n^{-1/2}$.
Publié le : 1988-09-14
Classification:  Empirical Bayes estimation,  squared error loss,  convergence rates,  nonexponential family,  62C12,  62F10,  62C25
@article{1176350966,
     author = {Nogami, Yoshiko},
     title = {Convergence Rates for Empirical Bayes Estimation in the Uniform $U(0, \theta)$ Distribution},
     journal = {Ann. Statist.},
     volume = {16},
     number = {1},
     year = {1988},
     pages = { 1335-1341},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350966}
}
Nogami, Yoshiko. Convergence Rates for Empirical Bayes Estimation in the Uniform $U(0, \theta)$ Distribution. Ann. Statist., Tome 16 (1988) no. 1, pp.  1335-1341. http://gdmltest.u-ga.fr/item/1176350966/