Efficient $D_s$-Optimal Designs for Multivariate Polynomial Regression on the $q$-Cube
Lim, Yong B. ; Studden, W. J.
Ann. Statist., Tome 16 (1988) no. 1, p. 1225-1240 / Harvested from Project Euclid
Polynomial regression in $q$ variables of degree $n$ on the $q$-cube is considered. Approximate $D$-optimal and approximate $D_s$-optimal designs for estimating higher degree terms are investigated. Numerical results are given for $n = 2$ with arbitrary $q$ and for $n = 3, 4, 5$ and $q = 2, 3$. Exact solutions are given within the class of product designs together with some efficiency calculations.
Publié le : 1988-09-14
Classification:  $D_s$-optimal designs,  symmetric designs,  product designs,  polynomial regression on the $q$-cube,  canonical moments,  62K05,  62J05
@article{1176350957,
     author = {Lim, Yong B. and Studden, W. J.},
     title = {Efficient $D\_s$-Optimal Designs for Multivariate Polynomial Regression on the $q$-Cube},
     journal = {Ann. Statist.},
     volume = {16},
     number = {1},
     year = {1988},
     pages = { 1225-1240},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350957}
}
Lim, Yong B.; Studden, W. J. Efficient $D_s$-Optimal Designs for Multivariate Polynomial Regression on the $q$-Cube. Ann. Statist., Tome 16 (1988) no. 1, pp.  1225-1240. http://gdmltest.u-ga.fr/item/1176350957/