Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity
Portnoy, Stephen
Ann. Statist., Tome 16 (1988) no. 1, p. 356-366 / Harvested from Project Euclid
Consider a sample of size $n$ from a regular exponential family in $p_n$ dimensions. Let $\hat\theta_n$ denote the maximum likelihood estimator, and consider the case where $p_n$ tends to infinity with $n$ and where $\{\theta_n\}$ is a sequence of parameter values in $R^{p_n}$. Moment conditions are provided under which $\|\hat\theta_n - \theta_n\| = O_p(\sqrt{p_n/n})$ and $\|\hat\theta_n - \theta_n - \overline{X}_n\| = O_p (p_n/n)$, where $\overline{X}_n$ is the sample mean. The latter result provides normal approximation results when $p^2_n/n \rightarrow 0$. It is shown by example that even for a single coordinate of $(\hat\theta_n - \theta_n), p^2_n/n \rightarrow 0$ may be needed for normal approximation. However, if $p^{3/2}_n/n \rightarrow 0$, the likelihood ratio test statistic $\Lambda$ for a simple hypothesis has a chi-square approximation in the sense that $(-2 \log \Lambda - p_n)/\sqrt{2p_n} \rightarrow_D \mathscr{N}(0, 1)$.
Publié le : 1988-03-14
Classification:  Asymptotics,  maximum likelihood,  central limit theorem,  exponential family,  62E20,  60F05,  62F10
@article{1176350710,
     author = {Portnoy, Stephen},
     title = {Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity},
     journal = {Ann. Statist.},
     volume = {16},
     number = {1},
     year = {1988},
     pages = { 356-366},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350710}
}
Portnoy, Stephen. Asymptotic Behavior of Likelihood Methods for Exponential Families when the Number of Parameters Tends to Infinity. Ann. Statist., Tome 16 (1988) no. 1, pp.  356-366. http://gdmltest.u-ga.fr/item/1176350710/