Strong Convergence of Distributions of Estimators
Jeganathan, P.
Ann. Statist., Tome 15 (1987) no. 1, p. 1699-1708 / Harvested from Project Euclid
It is shown that the convergence in law of estimators entails convergence uniformly over all Borel sets whenever the estimators are asymptotically equivariant in a suitable sense and the likelihood ratios of the sample are appropriately smooth. This result generalizes a recent result of Boos in many directions.
Publié le : 1987-12-14
Classification:  Strong convergence,  local asymptotic normality,  asymptotic equivariance,  62F12,  62G20
@article{1176350619,
     author = {Jeganathan, P.},
     title = {Strong Convergence of Distributions of Estimators},
     journal = {Ann. Statist.},
     volume = {15},
     number = {1},
     year = {1987},
     pages = { 1699-1708},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350619}
}
Jeganathan, P. Strong Convergence of Distributions of Estimators. Ann. Statist., Tome 15 (1987) no. 1, pp.  1699-1708. http://gdmltest.u-ga.fr/item/1176350619/