On Preliminary Test and Shrinkage $M$-Estimation in Linear Models
Sen, Pranab Kumar ; Saleh, A. K. M. Ehsanes
Ann. Statist., Tome 15 (1987) no. 1, p. 1580-1592 / Harvested from Project Euclid
In a general univariate linear model, $M$-estimation of a subset of parameters is considered when the complementary subset is plausibly redundant. Along with the classical versions, both the preliminary test and shrinkage versions of the usual $M$-estimators are considered and, in the light of their asymptotic distributional risks, the relative asymptotic risk-efficiency results are studied in detail. Though the shrinkage $M$-estimators may dominate their classical versions, they do not, in general, dominate the preliminary test versions.
Publié le : 1987-12-14
Classification:  Asymptotic distributional risk,  asymptotic distributional risk efficiency,  James-Stein rule,  linear model,  local alternatives,  $M$-estimators,  minimaxity,  preliminary test,  robustness,  shrinkage estimator,  62C16,  62G05,  62F10,  62H12
@article{1176350611,
     author = {Sen, Pranab Kumar and Saleh, A. K. M. Ehsanes},
     title = {On Preliminary Test and Shrinkage $M$-Estimation in Linear Models},
     journal = {Ann. Statist.},
     volume = {15},
     number = {1},
     year = {1987},
     pages = { 1580-1592},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350611}
}
Sen, Pranab Kumar; Saleh, A. K. M. Ehsanes. On Preliminary Test and Shrinkage $M$-Estimation in Linear Models. Ann. Statist., Tome 15 (1987) no. 1, pp.  1580-1592. http://gdmltest.u-ga.fr/item/1176350611/