An Application of the Efron-Stein Inequality in Density Estimation
Devroye, Luc
Ann. Statist., Tome 15 (1987) no. 1, p. 1317-1320 / Harvested from Project Euclid
The Efron-Stein inequality is applied to prove that the kernel density estimate $f_n$, with an arbitrary nonnegative kernel and an arbitrary smoothing factor, satisfies the inequality $\operatorname{var}(\int|f_n - f|) \leq 4/n$ for all densities $f$. Similar inequalities are obtained for other estimates.
Publié le : 1987-09-14
Classification:  Efron-Stein inequality,  density estimation,  kernel estimate,  distribution-free confidence interval,  60E15,  62G05
@article{1176350508,
     author = {Devroye, Luc},
     title = {An Application of the Efron-Stein Inequality in Density Estimation},
     journal = {Ann. Statist.},
     volume = {15},
     number = {1},
     year = {1987},
     pages = { 1317-1320},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350508}
}
Devroye, Luc. An Application of the Efron-Stein Inequality in Density Estimation. Ann. Statist., Tome 15 (1987) no. 1, pp.  1317-1320. http://gdmltest.u-ga.fr/item/1176350508/