One-Step $L$-Estimators for the Linear Model
Welsh, A. H.
Ann. Statist., Tome 15 (1987) no. 1, p. 626-641 / Harvested from Project Euclid
We propose and investigate the asymptotic properties of a class of estimators of the regression parameter in the general linear model. The estimators depend on a preliminary estimate of the regression parameter and the residuals based on it. For the location model, the estimators are linear combinations of the order statistics and the robustness and efficiency properties of this class of estimators carry over to the general linear model. The estimators settle the doubts raised by Bickel (1973) about the feasibility of the construction of a general class of reparametrization invariant estimators of a regression parameter which are linear combinations of order statistics in the location problem.
Publié le : 1987-06-14
Classification:  Efficient estimation,  linear combinations of order statistics,  linear model,  quantiles,  robust estimation,  62G05,  60F05,  62J05
@article{1176350365,
     author = {Welsh, A. H.},
     title = {One-Step $L$-Estimators for the Linear Model},
     journal = {Ann. Statist.},
     volume = {15},
     number = {1},
     year = {1987},
     pages = { 626-641},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350365}
}
Welsh, A. H. One-Step $L$-Estimators for the Linear Model. Ann. Statist., Tome 15 (1987) no. 1, pp.  626-641. http://gdmltest.u-ga.fr/item/1176350365/