A Class of Linear Regression Parameter Estimators Constructed by Nonparametric Estimation
Cristobal, J. A. Cristobal ; Roca, P. Faraldo ; Manteiga, W. Gonzalez
Ann. Statist., Tome 15 (1987) no. 1, p. 603-609 / Harvested from Project Euclid
Given a $(p + 1)$-dimensional random vector $(X, Y)$ where $f$ is the unknown density of $X$, the parameters of the multiple linear regression function $\alpha(x) = E(Y/X = x) = x\beta$ may be estimated from a sample $\{(X_1, Y_1), \cdots, (X_n, Y_n)\}$ by minimizing the functional $\hat{\psi}(\beta) = \int(\hat{\alpha}_n(x) - x\beta)^2\hat{f}_n(x) dx$, where $\hat{\alpha}_n$ and $\hat{f}_n$ may be any of a large class of nonparametric estimators of $\alpha$ and $f$. The strong consistency and asymptotic normality of the estimators so obtained are proved in this article under conditions on $(X, Y)$ that are less restrictive than those assumed by Faraldo Roca and Gonzalez Manteiga for $p = 1$. This class of estimators includes ordinary and generalized ridge regression estimators as special cases.
Publié le : 1987-06-14
Classification:  Linear regression,  nonparametric estimation,  ridge regression,  62J05,  62G05
@article{1176350363,
     author = {Cristobal, J. A. Cristobal and Roca, P. Faraldo and Manteiga, W. Gonzalez},
     title = {A Class of Linear Regression Parameter Estimators Constructed by Nonparametric Estimation},
     journal = {Ann. Statist.},
     volume = {15},
     number = {1},
     year = {1987},
     pages = { 603-609},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350363}
}
Cristobal, J. A. Cristobal; Roca, P. Faraldo; Manteiga, W. Gonzalez. A Class of Linear Regression Parameter Estimators Constructed by Nonparametric Estimation. Ann. Statist., Tome 15 (1987) no. 1, pp.  603-609. http://gdmltest.u-ga.fr/item/1176350363/