Magnitudinal Effects in the Normal Multivariate Model
Guttman, Irwin ; Menzefricke, U. ; Tyler, David
Ann. Statist., Tome 14 (1986) no. 2, p. 1555-1571 / Harvested from Project Euclid
Suppose the $(k \times 1)$ vectors $\mathbf{x}$ and $\mathbf{y}$ are independent with $\mathbf{x} \sim N(\mu, \Sigma)$ and $\mathbf{y} \sim N(\eta, \Sigma), \Sigma$ positive definite. If for a positive scalar $c, \mathbf{\eta} = c\mu$, we find the posterior of $c$, using noninformative priors, given the data $\{\mathbf{x}_i\}^{N_1}_1, \{\mathbf{y}_j\}^{N_2}_1$. The $\mathbf{x}_i$ are $N_1$ independent observations on $\mathbf{x}$, and independent of the $\mathbf{y}_j$, which are $N_2$ independent observations on $\mathbf{y}$. The constant $c$ is called the magnitudinal effect, and the posterior of $c$ turns out to involve a truncated Student-$t$ kernel. We also discuss the situation in which we wish to examine the truth of the statement $\mathbf{\eta} = c\mathbf{\mu}$, and proceed as follows. We first note that the matrix $\Lambda = (\lambda_{ij})$, where $\lambda_{11} = N_1\mathbf{\mu'}\Sigma^{-1}\mathbf{\mu}, \lambda_{12} = \lambda_{21} = \sqrt{N_1N_2}\mathbf{\mu'}\Sigma^{-1} \mathbf{\eta}$, and $\lambda_{22} = N_2\mathbf{\eta'}\Sigma^{-1}\mathbf{\eta}$, has a zero eigenroot if and only if $\mathbf{\eta} = c\mathbf{\mu}$, for some $c$. Hence, we are motivated to find the (joint) posterior distribution of $\omega_1, \omega_2$, the roots of $\Lambda$, where $\omega_1 > \omega_2 \geq 0$. Then, by integration with respect to $\omega_1$ over the region $\omega_1 > \omega_2$, we may find the marginal of $\omega_2$, and use it to examine the statement $\mathbf{\eta} = c\mathbf{\mu}$. The posterior of $(\omega_1, \omega_2)$ involves the multivariate hypergeometric function $_1F_^{(2)}1$, which in practice creates computational difficulties. Accordingly, some numerical considerations are discussed for computing of the posterior of $\omega_2$, and an example using real data is given.
Publié le : 1986-12-14
Classification:  Magnitudinal effect,  posterior distributions,  generalized hypergeometric functions of matrix arguments,  62F15,  62H99
@article{1176350176,
     author = {Guttman, Irwin and Menzefricke, U. and Tyler, David},
     title = {Magnitudinal Effects in the Normal Multivariate Model},
     journal = {Ann. Statist.},
     volume = {14},
     number = {2},
     year = {1986},
     pages = { 1555-1571},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350176}
}
Guttman, Irwin; Menzefricke, U.; Tyler, David. Magnitudinal Effects in the Normal Multivariate Model. Ann. Statist., Tome 14 (1986) no. 2, pp.  1555-1571. http://gdmltest.u-ga.fr/item/1176350176/