Curvatures for Parameter Subsets in Nonlinear Regression
Cook, R. Dennis ; Goldberg, Miriam L.
Ann. Statist., Tome 14 (1986) no. 2, p. 1399-1418 / Harvested from Project Euclid
The relative curvature measures of nonlinearity proposed by Bates and Watts (1980) are extended to an arbitrary subset of the parameters in a normal, nonlinear regression model. In particular, the subset curvatures proposed indicate the validity of linearization-based approximate confidence intervals for single parameters. The derivation produces the original Bates-Watts measures directly from the likelihood function. When the intrinsic curvature is negligible, the Bates-Watts parameter-effects curvature array contains all information necessary to construct curvature measures for parameter subsets.
Publié le : 1986-12-14
Classification:  Confidence regions,  curvature measures,  Fieller-Creasy problem,  least squares,  likelihood,  62J02,  62F25
@article{1176350166,
     author = {Cook, R. Dennis and Goldberg, Miriam L.},
     title = {Curvatures for Parameter Subsets in Nonlinear Regression},
     journal = {Ann. Statist.},
     volume = {14},
     number = {2},
     year = {1986},
     pages = { 1399-1418},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350166}
}
Cook, R. Dennis; Goldberg, Miriam L. Curvatures for Parameter Subsets in Nonlinear Regression. Ann. Statist., Tome 14 (1986) no. 2, pp.  1399-1418. http://gdmltest.u-ga.fr/item/1176350166/