A Minimum Distance Estimator for First-Order Autoregressive Processes
Wang, Chamont W. H.
Ann. Statist., Tome 14 (1986) no. 2, p. 1180-1193 / Harvested from Project Euclid
In this paper we construct a class of minimum distance Cramer-von Mises-type estimators for the parameter in the first-order stationary autoregressive time series. The estimator is proved to be asymptotically normal under appropriate assumptions. The proofs involve some results of independent interest.
Publié le : 1986-09-14
Classification:  Randomly weighted empirical processes,  stationary and ergodic processes,  bounded functionals on $L_2$-spaces,  Lipschitz condition,  conditional expectation,  62L10
@article{1176350058,
     author = {Wang, Chamont W. H.},
     title = {A Minimum Distance Estimator for First-Order Autoregressive Processes},
     journal = {Ann. Statist.},
     volume = {14},
     number = {2},
     year = {1986},
     pages = { 1180-1193},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176350058}
}
Wang, Chamont W. H. A Minimum Distance Estimator for First-Order Autoregressive Processes. Ann. Statist., Tome 14 (1986) no. 2, pp.  1180-1193. http://gdmltest.u-ga.fr/item/1176350058/