Asymptotic Behavior of Robust Estimators of Regression and Scale Parameters with Fixed Carriers
Silvapulle, Mervyn J.
Ann. Statist., Tome 13 (1985) no. 1, p. 1490-1497 / Harvested from Project Euclid
For the linear regression model, $y_i = \mathbf{x}_i\mathbf{\beta} + \varepsilon_i$ with fixed $\mathbf{x}_i s$, the asymptotic normality of $(\hat{\mathbf{\beta}}, \hat{\sigma})$ which minimizes the Huber-Dutter loss function, $\sum\sigma\rho\{(y_i - \mathbf{x}_i\mathbf{\beta})/\sigma\} + A_n\sigma$, is established under rather general conditions.
Publié le : 1985-12-14
Classification:  Linear regression,  robust estimation,  $M$ estimator,  simultaneous scale estimation,  62J05,  62F35,  62F11,  62F12
@article{1176349750,
     author = {Silvapulle, Mervyn J.},
     title = {Asymptotic Behavior of Robust Estimators of Regression and Scale Parameters with Fixed Carriers},
     journal = {Ann. Statist.},
     volume = {13},
     number = {1},
     year = {1985},
     pages = { 1490-1497},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176349750}
}
Silvapulle, Mervyn J. Asymptotic Behavior of Robust Estimators of Regression and Scale Parameters with Fixed Carriers. Ann. Statist., Tome 13 (1985) no. 1, pp.  1490-1497. http://gdmltest.u-ga.fr/item/1176349750/