An Error Bound for an Asymptotic Expansion of the Distribution Function of an Estimate in a Multivariate Linear Model
Fujikoshi, Yasunori
Ann. Statist., Tome 13 (1985) no. 1, p. 827-831 / Harvested from Project Euclid
In this paper we consider asymptotic approximations to the distribution function $F(x)$ of a linear combination of an estimate in a multivariate linear model. A method is given for obtaining an asymptotic expansion $F_{s - 1}(x)$ of $F(x)$ up to $O(n^{-s + 1})$ and a bound $c_s$ such that $|F(x) - F_{s - 1}(x)| \leq c_s$ uniformly in $x$ and $c_s = O(n^{-s})$.
Publié le : 1985-06-14
Classification:  Error bound,  asymptotic expansion,  distribution function,  linear combination of an estimate,  multivariate linear model,  62E20,  62H10
@article{1176349562,
     author = {Fujikoshi, Yasunori},
     title = {An Error Bound for an Asymptotic Expansion of the Distribution Function of an Estimate in a Multivariate Linear Model},
     journal = {Ann. Statist.},
     volume = {13},
     number = {1},
     year = {1985},
     pages = { 827-831},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176349562}
}
Fujikoshi, Yasunori. An Error Bound for an Asymptotic Expansion of the Distribution Function of an Estimate in a Multivariate Linear Model. Ann. Statist., Tome 13 (1985) no. 1, pp.  827-831. http://gdmltest.u-ga.fr/item/1176349562/