Using an argument developed in Siegmund (1982), we give a bound for the tail probability of Kolmogorov-Smirnov statistics in the following form $P(\inf_x(F_n(x) - F(x)) > \zeta) \leq 2\sqrt{2} e^{-2n\zeta^2}.$
Publié le : 1985-06-14
Classification:
Kolmogorov-Smirnov statistics,
exponential family,
random walk,
62E15,
62G15
@article{1176349561,
author = {Hu, Inchi},
title = {A Uniform Bound for the Tail Probability of Kolmogorov-Smirnov Statistics},
journal = {Ann. Statist.},
volume = {13},
number = {1},
year = {1985},
pages = { 821-826},
language = {en},
url = {http://dml.mathdoc.fr/item/1176349561}
}
Hu, Inchi. A Uniform Bound for the Tail Probability of Kolmogorov-Smirnov Statistics. Ann. Statist., Tome 13 (1985) no. 1, pp. 821-826. http://gdmltest.u-ga.fr/item/1176349561/