Best Invariant Estimation of a Direction Parameter
Anderson, T. W. ; Stein, Charles ; Zaman, Asad
Ann. Statist., Tome 13 (1985) no. 1, p. 526-533 / Harvested from Project Euclid
Let $X$ be an $n \times k$ random matrix whose coordinates are independently normally distributed with common variance $\sigma^2$ and means given by $EX = e\mu' + \theta\lambda',$ where $e$ is the vector in $R^n$ having all coordinates equal to $1, \theta \in R^n,$ and $\mu, \lambda \in R^k$ with $\sum^k_{j = 1} \lambda^2_j = 1.$ The problem is to estimate $\lambda$, say by $\hat{\lambda},$ with loss function $1 - (\lambda'\hat{\lambda})^2$ when $\mu, \theta,$ and $\sigma^2$ are unknown. It is shown that the largest principal component of $X'X - (1/n)X'ee'X$ is the best estimator invariant under rotations in $R^k$ and rotations in $R^n$ leaving $e$ invariant and is admissible.
Publié le : 1985-06-14
Classification:  Best invariant estimation,  direction parameters,  linear functional relationship,  factor analysis,  62C15,  62F10
@article{1176349536,
     author = {Anderson, T. W. and Stein, Charles and Zaman, Asad},
     title = {Best Invariant Estimation of a Direction Parameter},
     journal = {Ann. Statist.},
     volume = {13},
     number = {1},
     year = {1985},
     pages = { 526-533},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176349536}
}
Anderson, T. W.; Stein, Charles; Zaman, Asad. Best Invariant Estimation of a Direction Parameter. Ann. Statist., Tome 13 (1985) no. 1, pp.  526-533. http://gdmltest.u-ga.fr/item/1176349536/