Asymptotic Inference with Response-Adaptive Treatment Allocation Designs
Rosenberger, William F.
Ann. Statist., Tome 21 (1993) no. 1, p. 2098-2107 / Harvested from Project Euclid
A response-adaptive treatment allocation design for a clinical trial attempts to place the majority of patients on the treatment that appears more successful, based on the responses of patients already treated. One example of such a design is the randomized play-the-winner rule developed by Wei and Durham, which randomizes the treatment assignment probabilities according to the outcomes of treatments previously assigned. For a trial with dichotomous treatment responses and a randomized play-the-winner assignment scheme, exact small sample permutation tests of the hypothesis of equal treatment effects and large sample tests based on a population model have previously been developed. We present a large sample permutation test statistic for this case; under certain conditions on the sequence of responses, the test statistic is shown to be asymptotically normal. For a trial with a continuous response variable, we develop a rank-based analog of the randomized play-the-winner assignment scheme. Simulation evidence in both cases suggests that a normal approximation to the test statistic works well for moderate-sized trials, with some conservatism in the extreme tails.
Publié le : 1993-12-14
Classification:  Martingale central limit theorem,  permutation test,  randomized play-the-winner rule,  62G10,  62G20
@article{1176349412,
     author = {Rosenberger, William F.},
     title = {Asymptotic Inference with Response-Adaptive Treatment Allocation Designs},
     journal = {Ann. Statist.},
     volume = {21},
     number = {1},
     year = {1993},
     pages = { 2098-2107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176349412}
}
Rosenberger, William F. Asymptotic Inference with Response-Adaptive Treatment Allocation Designs. Ann. Statist., Tome 21 (1993) no. 1, pp.  2098-2107. http://gdmltest.u-ga.fr/item/1176349412/