The Expected Number of Local Maxima of a Random Field and the Volume of Tubes
Siegmund, David ; Zhang, Heping
Ann. Statist., Tome 21 (1993) no. 1, p. 1948-1966 / Harvested from Project Euclid
Using an expression for the expected number of local maxima of a random field, we derive an upper bound for the volume of a tube about a manifold in the unit sphere and show that under certain conditions our bound agrees with the evaluation of the tube volume in Weyl's formula. Applications to tests and confidence regions in nonlinear regression are discussed.
Publié le : 1993-12-14
Classification:  Tube volume,  nonlinear regression,  62J02,  53A07
@article{1176349404,
     author = {Siegmund, David and Zhang, Heping},
     title = {The Expected Number of Local Maxima of a Random Field and the Volume of Tubes},
     journal = {Ann. Statist.},
     volume = {21},
     number = {1},
     year = {1993},
     pages = { 1948-1966},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176349404}
}
Siegmund, David; Zhang, Heping. The Expected Number of Local Maxima of a Random Field and the Volume of Tubes. Ann. Statist., Tome 21 (1993) no. 1, pp.  1948-1966. http://gdmltest.u-ga.fr/item/1176349404/