Consistency is shown for the minimum covariance determinant (MCD) estimators of multivariate location and scale and asymptotic normality is shown for the former. The proofs are made possible by showing a separating ellipsoid property for the MCD subset of observations. An analogous property is shown for the MCD subset computed from the population distribution.
@article{1176349264,
author = {Butler, R. W. and Davies, P. L. and Jhun, M.},
title = {Asymptotics for the Minimum Covariance Determinant Estimator},
journal = {Ann. Statist.},
volume = {21},
number = {1},
year = {1993},
pages = { 1385-1400},
language = {en},
url = {http://dml.mathdoc.fr/item/1176349264}
}
Butler, R. W.; Davies, P. L.; Jhun, M. Asymptotics for the Minimum Covariance Determinant Estimator. Ann. Statist., Tome 21 (1993) no. 1, pp. 1385-1400. http://gdmltest.u-ga.fr/item/1176349264/