Renormalization arguments are used to derive optimal rates of convergence, under integrated squared error loss, for parameter spaces having a certain rectangular structure.
Publié le : 1993-06-14
Classification:
Nonparametric functional estimation,
renormalization,
white noise model,
62G07,
62C20
@article{1176349137,
author = {Low, Mark G.},
title = {Renormalizing Upper and Lower Bounds for Integrated Risk in the White Noise Model:},
journal = {Ann. Statist.},
volume = {21},
number = {1},
year = {1993},
pages = { 577-589},
language = {en},
url = {http://dml.mathdoc.fr/item/1176349137}
}
Low, Mark G. Renormalizing Upper and Lower Bounds for Integrated Risk in the White Noise Model:. Ann. Statist., Tome 21 (1993) no. 1, pp. 577-589. http://gdmltest.u-ga.fr/item/1176349137/