Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators
van de Geer, Sara
Ann. Statist., Tome 21 (1993) no. 1, p. 14-44 / Harvested from Project Euclid
Consider a class $\mathscr{P}={P_\theta:\theta\in\Theta}$ of probability measures on a measurable space $(\mathscr{X},\mathscr{A})$, dominated by a $\sigma$ -finite measure $\mu$. Let $f_\theta=dP_\theta/d_\mu$, $\theta\ in\Theta$, and let $\theta_n$ be a maximum likelihood estimator based on n independent observations from $P_{\theta_0}$, $\theta_0\in\Theta$. We use results from empirical process theory to obtain convergence for the Hellinger distance $h(f_{\hat{\theta}_n}, f_{\theta_0})$, under certain entropy conditions on the class of densities ${f_\theta:\theta\in\Theta}$ The examples we present are a model with interval censored observations, smooth densities, monotone densities and convolution models. In most examples, the convexity of the class of densities is of special importance.
Publié le : 1993-03-14
Classification:  Consistency,  empirical process,  entropy,  Hellinger distance,  maximum likelihood,  rates of convergence,  62G05,  60G50,  62F12
@article{1176349013,
     author = {van de Geer, Sara},
     title = {Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators},
     journal = {Ann. Statist.},
     volume = {21},
     number = {1},
     year = {1993},
     pages = { 14-44},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176349013}
}
van de Geer, Sara. Hellinger-Consistency of Certain Nonparametric Maximum Likelihood Estimators. Ann. Statist., Tome 21 (1993) no. 1, pp.  14-44. http://gdmltest.u-ga.fr/item/1176349013/