Minimaxity of the Best Invariant Estimator of a Distribution Function under the Kolmogorov-Smirnov Loss
Yu, Qiqing ; Phadia, Eswar
Ann. Statist., Tome 20 (1992) no. 1, p. 2192-2195 / Harvested from Project Euclid
For the invariant decision problem of estimating a continuous distribution function with the Kolmogorov-Smirnov loss, it is proved that the best invariant estimator is minimax.
Publié le : 1992-12-14
Classification:  Best invariant estimator,  Kolmogorov-Smirnov loss,  minimaxity,  62C15,  62D05
@article{1176348914,
     author = {Yu, Qiqing and Phadia, Eswar},
     title = {Minimaxity of the Best Invariant Estimator of a Distribution Function under the Kolmogorov-Smirnov Loss},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 2192-2195},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348914}
}
Yu, Qiqing; Phadia, Eswar. Minimaxity of the Best Invariant Estimator of a Distribution Function under the Kolmogorov-Smirnov Loss. Ann. Statist., Tome 20 (1992) no. 1, pp.  2192-2195. http://gdmltest.u-ga.fr/item/1176348914/