Asymptotic Comparison of Cramer-von Mises and Nonparametric Function Estimation Techniques for Testing Goodness-of-Fit
Eubank, R. L. ; LaRiccia, V. N.
Ann. Statist., Tome 20 (1992) no. 1, p. 2071-2086 / Harvested from Project Euclid
Two new statistics for testing goodness-of-fit are derived from the viewpoint of nonparametric density estimation. These statistics are closely related to the Neyman smooth and Cramer-von Mises statistics but are shown to have superior properties both through asymptotic and small sample analyses. Comparison of the proposed tests with the Cramer-von Mises statistic requires the development of a novel technique for comparing tests that are capable of detecting local alternatives converging to the null at different rates.
Publié le : 1992-12-14
Classification:  Asymptotic efficiency,  density estimation,  Fourier series,  high frequency alternatives,  62G10,  62E20
@article{1176348903,
     author = {Eubank, R. L. and LaRiccia, V. N.},
     title = {Asymptotic Comparison of Cramer-von Mises and Nonparametric Function Estimation Techniques for Testing Goodness-of-Fit},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 2071-2086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348903}
}
Eubank, R. L.; LaRiccia, V. N. Asymptotic Comparison of Cramer-von Mises and Nonparametric Function Estimation Techniques for Testing Goodness-of-Fit. Ann. Statist., Tome 20 (1992) no. 1, pp.  2071-2086. http://gdmltest.u-ga.fr/item/1176348903/