Limit Distributions for Mardia's Measure of Multivariate Skewness
Baringhaus, L. ; Henze, N.
Ann. Statist., Tome 20 (1992) no. 1, p. 1889-1902 / Harvested from Project Euclid
We study the asymptotic behavior of Mardia's measure of (sample) multivariate skewness. In the special case of an elliptically symmetric distribution, the limit law is a weighted sum of two independent $\chi^2$-variates. A normal limit distribution arises if the population distribution has positive skewness. These results explain some curiosities in the power performance of a commonly proposed test for multivariate normality based on multivariate skewness.
Publié le : 1992-12-14
Classification:  Multivariate skewness,  test for multivariate normality,  consistency,  elliptically symmetric distributions,  $V$-statistics,  62H15,  62H10
@article{1176348894,
     author = {Baringhaus, L. and Henze, N.},
     title = {Limit Distributions for Mardia's Measure of Multivariate Skewness},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 1889-1902},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348894}
}
Baringhaus, L.; Henze, N. Limit Distributions for Mardia's Measure of Multivariate Skewness. Ann. Statist., Tome 20 (1992) no. 1, pp.  1889-1902. http://gdmltest.u-ga.fr/item/1176348894/