Rousseeuw's minimum volume estimator for multivariate location and dispersion parameters has the highest possible breakdown point for an affine equivariant estimator. In this paper we establish that it satisfies a local Holder condition of order $1/2$ and converges weakly at the rate of $n^{-1/3}$ to a non-Gaussian distribution.
@article{1176348891,
author = {Davies, Laurie},
title = {The Asymptotics of Rousseeuw's Minimum Volume Ellipsoid Estimator},
journal = {Ann. Statist.},
volume = {20},
number = {1},
year = {1992},
pages = { 1828-1843},
language = {en},
url = {http://dml.mathdoc.fr/item/1176348891}
}
Davies, Laurie. The Asymptotics of Rousseeuw's Minimum Volume Ellipsoid Estimator. Ann. Statist., Tome 20 (1992) no. 1, pp. 1828-1843. http://gdmltest.u-ga.fr/item/1176348891/