Asymptotics for $M$-Estimators Defined by Convex Minimization
Niemiro, Wojciech
Ann. Statist., Tome 20 (1992) no. 1, p. 1514-1533 / Harvested from Project Euclid
We consider $M$-estimators defined by minimization of a convex criterion function, not necessarily smooth. Our asymptotic results generalize some of those concerning the LAD estimators. We establish a Bahadur-type strong approximation and bounds on the rate of convergence.
Publié le : 1992-09-14
Classification:  $M$-estimation,  convex minimization,  asymptotics,  least absolute deviations,  Bahadur representation,  62F12,  62F20
@article{1176348782,
     author = {Niemiro, Wojciech},
     title = {Asymptotics for $M$-Estimators Defined by Convex Minimization},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 1514-1533},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348782}
}
Niemiro, Wojciech. Asymptotics for $M$-Estimators Defined by Convex Minimization. Ann. Statist., Tome 20 (1992) no. 1, pp.  1514-1533. http://gdmltest.u-ga.fr/item/1176348782/