An Improved Sequential Procedure for Estimating the Regression Parameter in Regression Models with Symmetric Errors
Sriram, T. N.
Ann. Statist., Tome 20 (1992) no. 1, p. 1441-1453 / Harvested from Project Euclid
A sequential procedure for estimating the regression parameter $\beta \in R^k$ in a regression model with symmetric errors is proposed. This procedure is shown to have asymptotically smaller regret than the procedure analyzed by Martinsek when $\mathbf{\beta} = \mathbf{0}$, and the same asymptotic regret as that procedure when $\mathbf{\beta} \neq \mathbf{0}$. Consequently, even when the errors are normally distributed, it follows that the asymptotic regret can be negative when $\mathbf{\beta} = \mathbf{0}$. These results extend a recent work of Takada dealing with the estimation of the normal mean, to both regression and nonnormal cases.
Publié le : 1992-09-14
Classification:  Sequential procedure,  regression,  least squares estimate,  regret,  stopping rule,  62L12,  60G40,  62J05
@article{1176348777,
     author = {Sriram, T. N.},
     title = {An Improved Sequential Procedure for Estimating the Regression Parameter in Regression Models with Symmetric Errors},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 1441-1453},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348777}
}
Sriram, T. N. An Improved Sequential Procedure for Estimating the Regression Parameter in Regression Models with Symmetric Errors. Ann. Statist., Tome 20 (1992) no. 1, pp.  1441-1453. http://gdmltest.u-ga.fr/item/1176348777/