Consider an incomplete data problem with the following specifications. There are three independent samples $(X_1, \ldots, X_m), (Z_1, \ldots, Z_n)$ and $(U_1, \ldots, U_n)$. The first two samples are drawn from a common lifetime distribution function $G$, while the third sample is drawn from the uniform distribution over the interval $(0,1)$. In this paper we derive the large sample properties of $\hat{G}_{m,n}$, the nonparametric maximum likelihood estimate of $G$ based on the observed data $X_1, \ldots, X_m$ and $Y_1, \ldots, Y_n$, where $Y_i \equiv Z_iU_i, i = 1, \ldots, n$. (The $Z$'s and $U$'s are unobservable.) In particular we show that if $m$ and $n$ approach infinity at a suitable rate, then $\sup_t|\hat{G}_{m,n}(t) - G(t)| \rightarrow 0$ (a.s.), $\sqrt{m + n}(\hat{G}_{m,n} - G)$ converges weakly to a Gaussian process and the estimate $\hat{G}_{m,n}$ is asymptotically efficient in a nonparametric sense.