Statistical Inference for Conditional Curves: Poisson Process Approach
Falk, M. ; Reiss, R.-D.
Ann. Statist., Tome 20 (1992) no. 1, p. 779-796 / Harvested from Project Euclid
A Poisson approximation of a truncated, empirical point process enables us to reduce conditional statistical problems to unconditional ones. Let $(\mathbf{X,Y})$ be a $(d + m)$-dimensional random vector and denote by $F(\cdot\mid\mathbf{x})$ the conditional d.f. of $\mathbf{Y}$ given $\mathbf{X} = \mathbf{x}$. Applying our approach, one may study the fairly general problem of evaluating a functional parameter $T(F(\cdot\mid\mathbf{x}_1),\ldots,F(\cdot\mid\mathbf{x}_p))$ based on independent replicas $(\mathbf{X}_1,\mathbf{Y}_1),\ldots,(\mathbf{X}_n,\mathbf{Y}_n)$ of $(\mathbf{X,Y})$. This will be exemplified in the particular cases of nonparametric estimation of regression means and regression quantiles besides other functionals.
Publié le : 1992-06-14
Classification:  Regression functionals,  Poisson process,  empirical process,  Hellinger distance,  62J99,  60G55
@article{1176348656,
     author = {Falk, M. and Reiss, R.-D.},
     title = {Statistical Inference for Conditional Curves: Poisson Process Approach},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 779-796},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348656}
}
Falk, M.; Reiss, R.-D. Statistical Inference for Conditional Curves: Poisson Process Approach. Ann. Statist., Tome 20 (1992) no. 1, pp.  779-796. http://gdmltest.u-ga.fr/item/1176348656/