On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice
Comets, Francis
Ann. Statist., Tome 20 (1992) no. 1, p. 455-468 / Harvested from Project Euclid
We prove strong consistency of a class of maximum objective estimators for exponential parametric families of Markov random fields on $\mathbb{Z}^d$, including both maximum likelihood and pseudolikelihood estimators, using large deviation estimates. We also obtain the optimality property for the maximum likelihood estimator in the sense of Bahadur.
Publié le : 1992-03-14
Classification:  Maximum likelihood estimator,  pseudolikelihood,  Markov random field,  objective function,  Bahadur efficiency,  large deviation,  62F10,  62M05,  82A25,  60G60
@article{1176348532,
     author = {Comets, Francis},
     title = {On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 455-468},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348532}
}
Comets, Francis. On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice. Ann. Statist., Tome 20 (1992) no. 1, pp.  455-468. http://gdmltest.u-ga.fr/item/1176348532/