Nonparametric Function Estimation Involving Time Series
Truong, Young K. ; Stone, Charles J.
Ann. Statist., Tome 20 (1992) no. 1, p. 77-97 / Harvested from Project Euclid
Consider a stationary time series $(\mathbf{X}_t, Y_t), t = 0, \pm 1,\ldots,$ with $\mathbf{X}_t$ being $\mathbb{R}^d$-valued and $Y_t$ real-valued. The conditional mean function is given by $\theta(\mathbf{X}_0) = E(Y_0\mid\mathbf{X}_0)$. Under appropriate regularity conditions, a local average estimator of this function based on a finite realization $(\mathbf{X}_1, Y_1),\ldots,(\mathbf{X}_n, Y_n)$ can be chosen to achieve the optimal rate of convergence $n^{-1/(2 + d)}$ both pointwise and in $L_2$ norms restricted to a compact; and it can also be chosen to achieve the optimal rate of convergence $(n^{-1} \log(n))^{1/(2 + d)}$ in $L_\infty$ norm restricted to a compact. Similar results hold for local median estimators of the conditional median function, which is given by $\theta(\mathbf{X}_0) = \operatorname{med}(Y_0\mid\mathbf{X}_0)$.
Publié le : 1992-03-14
Classification:  Stationarity,  conditional mean function,  local aveage,  conditional median function,  local median,  rate of convergence,  62G05,  62E20
@article{1176348513,
     author = {Truong, Young K. and Stone, Charles J.},
     title = {Nonparametric Function Estimation Involving Time Series},
     journal = {Ann. Statist.},
     volume = {20},
     number = {1},
     year = {1992},
     pages = { 77-97},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176348513}
}
Truong, Young K.; Stone, Charles J. Nonparametric Function Estimation Involving Time Series. Ann. Statist., Tome 20 (1992) no. 1, pp.  77-97. http://gdmltest.u-ga.fr/item/1176348513/